/etc/netmasks


192.0.0.0 255.255.0.0
192.168.0.0 255.255.255.0
192.168.10.128 255.255.255.128


===============================


Netmasks Expanded (/24 through /32)
Netmask 255.255.255.0 /24 (11111111.11111111.11111111.00000000)
1 subnet
LOW IP HI IP
x.x.x.0 x.x.x.255


Netmask 255.255.255.128 /25 (11111111.11111111.11111111.10000000)
2 subnets
LOW IP HI IP
x.x.x.0 x.x.x.127
x.x.x.128 x.x.x.255


Netmask 255.255.255.192 /26 (11111111.11111111.11111111.11000000)
4 subnets
x.x.x.0 x.x.x.63
x.x.x.64 x.x.x.127
x.x.x.128 x.x.x.191
x.x.x.192 x.x.x.255


Netmask 255.255.255.224 /27 (11111111.11111111.11111111.11100000)
8 subnets
x.x.x.0 x.x.x.31
x.x.x.32 x.x.x.63
x.x.x.64 x.x.x.95
x.x.x.96 x.x.x.127
x.x.x.128 x.x.x.159
x.x.x.160 x.x.x.191
x.x.x.192 x.x.x.223
x.x.x.224 x.x.x.255


Netmask 255.255.255.240 /28 (11111111.11111111.11111111.11110000)
16 subnets
x.x.x.0 x.x.x.15
x.x.x.16 x.x.x.31
x.x.x.32 x.x.x.47
x.x.x.48 x.x.x.63
x.x.x.64 x.x.x.79
x.x.x.80 x.x.x.95
x.x.x.96 x.x.x.111
x.x.x.112 x.x.x.127
x.x.x.128 x.x.x.143
x.x.x.144 x.x.x.159
x.x.x.160 x.x.x.175
x.x.x.176 x.x.x.191
x.x.x.192 x.x.x.207
x.x.x.208 x.x.x.223
x.x.x.224 x.x.x.239
x.x.x.240 x.x.x.255


Netmask 255.255.255.248 /29 (11111111.11111111.11111111.11111000)
32 subnets
x.x.x.0 x.x.x.7
x.x.x.8 x.x.x.15
x.x.x.16 x.x.x.23
x.x.x.24 x.x.x.31
x.x.x.32 x.x.x.39
x.x.x.40 x.x.x.47
x.x.x.48 x.x.x.55
x.x.x.56 x.x.x.63
x.x.x.64 x.x.x.71
x.x.x.72 x.x.x.79
x.x.x.80 x.x.x.87
x.x.x.88 x.x.x.95
x.x.x.96 x.x.x.103
x.x.x.104 x.x.x.111
x.x.x.112 x.x.x.119
x.x.x.120 x.x.x.127
x.x.x.128 x.x.x.135
x.x.x.136 x.x.x.143
x.x.x.144 x.x.x.151
x.x.x.152 x.x.x.159
x.x.x.160 x.x.x.167
x.x.x.168 x.x.x.175
x.x.x.176 x.x.x.183
x.x.x.184 x.x.x.191
x.x.x.192 x.x.x.199
x.x.x.200 x.x.x.207
x.x.x.208 x.x.x.215
x.x.x.216 x.x.x.223
x.x.x.224 x.x.x.231
x.x.x.232 x.x.x.239
x.x.x.240 x.x.x.247
x.x.x.248 x.x.x.255


Netmask 255.255.255.252 /30 (11111111.11111111.11111111.11111100)
64 subnets
LOW IP HI IP
x.x.x.0 x.x.x.3
x.x.x.4 x.x.x.7
x.x.x.8 x.x.x.11
x.x.x.12 x.x.x.15
x.x.x.16 x.x.x.19
x.x.x.20 x.x.x.23
x.x.x.24 x.x.x.27
x.x.x.28 x.x.x.31
x.x.x.32 x.x.x.35
x.x.x.36 x.x.x.39
x.x.x.40 x.x.x.43
x.x.x.44 x.x.x.47
x.x.x.48 x.x.x.51
x.x.x.52 x.x.x.55
x.x.x.56 x.x.x.59
x.x.x.60 x.x.x.63
x.x.x.64 x.x.x.67
x.x.x.68 x.x.x.71
x.x.x.72 x.x.x.75
x.x.x.76 x.x.x.79
x.x.x.80 x.x.x.83
x.x.x.84 x.x.x.87
x.x.x.88 x.x.x.91
x.x.x.92 x.x.x.95
x.x.x.96 x.x.x.99
x.x.x.100 x.x.x.103
x.x.x.104 x.x.x.107
x.x.x.108 x.x.x.111
x.x.x.112 x.x.x.115
x.x.x.116 x.x.x.119
x.x.x.120 x.x.x.123
x.x.x.124 x.x.x.127
x.x.x.128 x.x.x.131
x.x.x.132 x.x.x.135
x.x.x.136 x.x.x.139
x.x.x.140 x.x.x.143
x.x.x.144 x.x.x.147
x.x.x.148 x.x.x.151
x.x.x.152 x.x.x.155
x.x.x.156 x.x.x.159
x.x.x.160 x.x.x.163
x.x.x.164 x.x.x.167
x.x.x.168 x.x.x.171
x.x.x.172 x.x.x.175
x.x.x.176 x.x.x.179
x.x.x.180 x.x.x.183
x.x.x.184 x.x.x.187
x.x.x.188 x.x.x.191
x.x.x.192 x.x.x.195
x.x.x.196 x.x.x.199
x.x.x.200 x.x.x.203
x.x.x.204 x.x.x.207
x.x.x.208 x.x.x.211
x.x.x.212 x.x.x.215
x.x.x.216 x.x.x.219
x.x.x.220 x.x.x.223
x.x.x.224 x.x.x.227
x.x.x.228 x.x.x.231
x.x.x.232 x.x.x.235
x.x.x.236 x.x.x.239
x.x.x.240 x.x.x.243
x.x.x.244 x.x.x.247
x.x.x.248 x.x.x.251
x.x.x.252 x.x.x.255


net mask:


1111 1100 == 252



——————————————————————————–



Pozar’s two-bit(tm) addressing


4-bit m m m m
2-bit m m
(.1) 0 0 0 0 0 0 0 1 (.2) 0 0 0 0 0 0 1 0
(.17) 0 0 0 1 0 0 0 1 (.18) 0 0 0 1 0 0 1 0
(.33) 0 0 1 0 0 0 0 1 (.34) 0 0 1 0 0 0 1 0
(.49) 0 0 1 1 0 0 0 1 (.50) 0 0 1 1 0 0 1 0
(.65) 0 1 0 0 0 0 0 1 (.66) 0 1 0 0 0 0 1 0
(.129) 1 0 0 0 0 0 0 1 (.130) 1 0 0 0 0 0 1 0
(.193) 1 1 0 0 0 0 0 1 (.194) 1 1 0 0 0 0 1 0
(.225) 1 1 1 0 0 0 0 1 (.226) 1 1 1 0 0 0 1 0



——————————————————————————–



Younker’s tables


Here’s a table showing the relationship between the / notation, the byte
notation, and the corresponding binary numbers (with a dot every eight
digits) for the 32 bit addresses. I’ve thrown in a count of how many
Class A/B/C networks the larger networks encompass.


/ Notation Binary Byte Notation #Class
———- ———————————– ————– ——
/0 00000000.00000000.00000000.00000000 0.0.0.0 256 A
/1 10000000.00000000.00000000.00000000 128.0.0.0 128 A
/2 11000000.00000000.00000000.00000000 192.0.0.0 64 A
/3 11100000.00000000.00000000.00000000 224.0.0.0 32 A
/4 11110000.00000000.00000000.00000000 240.0.0.0 16 A
/5 11111000.00000000.00000000.00000000 248.0.0.0 8 A
/6 11111100.00000000.00000000.00000000 252.0.0.0 4 A
/7 11111110.00000000.00000000.00000000 254.0.0.0 2 A
/8 11111111.00000000.00000000.00000000 255.0.0.0 1 A
/9 11111111.10000000.00000000.00000000 255.128.0.0 128 B
/10 11111111.11000000.00000000.00000000 255.192.0.0 64 B
/11 11111111.11100000.00000000.00000000 255.224.0.0 32 B
/12 11111111.11110000.00000000.00000000 255.240.0.0 16 B
/13 11111111.11111000.00000000.00000000 255.248.0.0 8 B
/14 11111111.11111100.00000000.00000000 255.252.0.0 4 B
/15 11111111.11111110.00000000.00000000 255.254.0.0 2 B
/16 11111111.11111111.00000000.00000000 255.255.0.0 1 B
/17 11111111.11111111.10000000.00000000 255.255.128.0 128 C
/18 11111111.11111111.11000000.00000000 255.255.192.0 64 C
/19 11111111.11111111.11100000.00000000 255.255.224.0 32 C
/20 11111111.11111111.11110000.00000000 255.255.240.0 16 C
/21 11111111.11111111.11111000.00000000 255.255.248.0 8 C
/22 11111111.11111111.11111100.00000000 255.255.252.0 4 C
/23 11111111.11111111.11111110.00000000 255.255.254.0 2 C
/24 11111111.11111111.11111111.00000000 255.255.255.0 1 C
/25 11111111.11111111.11111111.10000000 255.255.255.128
/26 11111111.11111111.11111111.11000000 255.255.255.192
/27 11111111.11111111.11111111.11100000 255.255.255.224
/28 11111111.11111111.11111111.11110000 255.255.255.240
/29 11111111.11111111.11111111.11111000 255.255.255.248
/30 11111111.11111111.11111111.11111100 255.255.255.252
/31 11111111.11111111.11111111.11111110 255.255.255.254
/32 11111111.11111111.11111111.11111111 255.255.255.255


Here’s an example of how to get from the binary number 11000000 to
the decimal number (192).


11000000 => 128*1 + 64*1 + 32*0 + 16*0 + 8*0 + 4*0 + 2*0 + 1*0
= 128 + 64 + 0 + 0 + 0 + 0 + 0 + 0
= 128 + 64
= 192


Another example (using an arbitrarily chosen binary number):


10000100 => 128*1 + 64*0 + 32*0 + 16*0 + 8*0 + 4*1 + 2*0 + 1*0
= 128 + 0 + 0 + 0 + 0 + 4 + 0 + 0
= 128 + 4
= 132


 

By haisins

오라클 DBA 박용석 입니다. haisins@gmail.com 으로 문의 주세요.

답글 남기기

이메일 주소를 발행하지 않을 것입니다. 필수 항목은 *(으)로 표시합니다